


|                                                             | Standards Unpacking                                                                                             |                                                                   |  |  |  |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
| Key                                                         | Standard                                                                                                        | Prerequisites/Vocabulary                                          |  |  |  |  |  |
| Put a box around the conceptual component of the standard.  | <b>5.NBT.5</b> - With accuracy and efficiency, multiply multi-digit whole numbers using the standard algorithm. | What prior knowledge should my students have?                     |  |  |  |  |  |
| Underline the procedural/fluency component of the standard. |                                                                                                                 | What vocabulary/ notation should students know for this standard? |  |  |  |  |  |
| Put a cloud around the application component                |                                                                                                                 |                                                                   |  |  |  |  |  |
| of the standard.                                            |                                                                                                                 |                                                                   |  |  |  |  |  |



**Directions:** Complete the following SOLVE problem with your teacher. You will only complete the S step.

Michael works for a company that packs cards in boxes for stores. He has worked there for 15 years. Every day he packs 24 boxes with 36 cards in each box. How many cards does he pack in the boxes in one day?

S Underline the question.
This problem is asking me to find \_\_\_\_\_\_

**Directions:** Complete this page with your teacher and partner.

 $15 \bullet 17 = Factors$ :

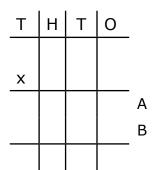
Distribute Factors for Double Digits:

| Α |  |  |  |  |  |  |  | В |
|---|--|--|--|--|--|--|--|---|
|   |  |  |  |  |  |  |  |   |
|   |  |  |  |  |  |  |  |   |
|   |  |  |  |  |  |  |  |   |
|   |  |  |  |  |  |  |  |   |
|   |  |  |  |  |  |  |  |   |
|   |  |  |  |  |  |  |  |   |
| С |  |  |  |  |  |  |  | D |
|   |  |  |  |  |  |  |  |   |
|   |  |  |  |  |  |  |  |   |
|   |  |  |  |  |  |  |  |   |
|   |  |  |  |  |  |  |  |   |
|   |  |  |  |  |  |  |  |   |
|   |  |  |  |  |  |  |  |   |

| Open Array |   |
|------------|---|
|            | В |
|            |   |
|            |   |
| С          | D |
|            |   |
|            |   |
|            |   |
|            |   |
|            |   |

**Directions:** Complete this page with your teacher and partner.

**1.** 32 x 4


Factors:

Distributed Factors:

Open Array

АВ

Moving Toward the Multiplication Algorithm



Multiplication Algorithm

| Т | Н | Т | 0 |
|---|---|---|---|
|   |   |   |   |
| Х |   |   |   |
|   |   |   |   |

Steps for Solving:

**Directions:** Complete this page with your teacher and partner.

**2.** 23 x 43

Factors:

Distributed Factors:

Open Array

| Α | В |
|---|---|
| С | D |

Moving Toward the Multiplication Algorithm

| Т | Н | Т | 0 |   |
|---|---|---|---|---|
|   |   |   |   |   |
| Χ |   |   |   | _ |
|   |   |   |   | Α |
|   |   |   |   | В |
|   |   |   |   | С |
| + |   |   |   | D |
|   |   |   |   |   |

Multiplication Algorithm

| Т        | Н | Т | 0 |
|----------|---|---|---|
|          |   |   |   |
| <u> </u> |   |   |   |
| +        |   |   |   |
|          |   |   |   |

Steps for Solving:

**Directions:** Complete this page with your partner.

**3.** 32 x 24

Factors:

Distributed Factors:

Open Array

| А | В |
|---|---|
| С | D |

Moving Toward the Multiplication Algorithm

| Т | Н | Т | 0 |   |
|---|---|---|---|---|
|   |   |   |   |   |
| Х |   |   |   |   |
|   |   |   |   | Α |
|   |   |   |   | В |
|   |   |   |   | С |
| + |   |   |   | D |
|   |   |   |   |   |

Multiplication Algorithm

| Т        | Н | Т | 0 |
|----------|---|---|---|
|          |   |   |   |
| <u> </u> |   |   |   |
| +        |   |   |   |
|          |   |   |   |

Steps for Solving:

**Directions:** Complete this page with your teacher and partner.

**1.** 136 x 23

| Steps for Solving: | Multiplication Algorithm |
|--------------------|--------------------------|
|                    | т   н   т   о            |
|                    |                          |
|                    | x                        |
|                    | +                        |
|                    |                          |
|                    |                          |
|                    |                          |

**2.** 413 x 24

**3.** 81 x 27

| Multiplication Algorithm |
|--------------------------|
|                          |
|                          |
|                          |
|                          |
|                          |

**Directions:** Complete this page with your partner.

### **Understanding Modeling Questions**

Use this sheet as a reflection tool to support the understanding of the modeling questions. After you engage/learn about the questions, use the tool to make notes around your take aways, implementation ideas, and ways to incorporate the rubric

|                                                          | Takeaways About the Questions | Reflections on Implementation<br>Ideas and the Rubric |
|----------------------------------------------------------|-------------------------------|-------------------------------------------------------|
| Takeaways About the<br>Questions                         |                               |                                                       |
| Understanding of How<br>They Are Scored                  |                               |                                                       |
| Reflections on<br>Implementation Ideas and<br>the Rubric |                               |                                                       |

| Think Quantities!                                              | Think Structure!                                   | Think Repetition!                                          |
|----------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|
| What can I count?                                              | How is this situation behaving?                    | Is there a process that keeps                              |
| What can I measure?                                            | What kind of problem is this?                      | repeating?                                                 |
| How are the quantities related?                                | Does the problem remind me of another I've solved? | Am I counting /building/drawing in the same way each time? |
| How can I represent the quantities so I can see relationships? | Will changing the form help?                       | Do I keep repeating the same calculations?                 |
| 333333                                                         | How can I chunk this expressions/number/visual?    | How can I use repetition to write a rule?                  |



#### Modeling Question - D.2

Used from: NJ Released Questions – D.2 – Operations and Algebraic Thinking - 2018 – 0083-M0045

#### Part A

A parking garage has a total of 87 parking spaces. If there are 3 levels in the garage, and each level has an equal number of parking spaces, how many parking spaces are on each level?

#### Part B

The parking garage will add 2 new levels of parking spaces. Each new level will have twice the number of parking spaces as the old levels. How many parking spaces in all will be on these 2 new levels?

#### Part C

After the 2 new levels of parking spaces are complete, the garage will gain 98 new customers. The garage will then have a total of 171 customers.

- Write an equation to find the number of customers the garage had before the 2 new levels were added. Use the letter c to stand for the unknown number in your equation.
- How many customers did the garage have before the 2 new levels were added?
- About how many empty parking spaces will the garage have after the 2 new levels are completed and all its customers have parking spaces? Round your answer to the nearest ten. Explain your thinking using numbers and/or words.
- Show all your work.



|                                                            | Standards Unpack                                                                                                                                     | king                                                              |  |  |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Кеу                                                        | Standard                                                                                                                                             | Prerequisites/Vocabulary                                          |  |  |  |
|                                                            | 5.M.2 (Old 5.MD.3) - Recognize volume as an attribute of solid figures and understand concepts of volume measurement                                 | What prior knowledge should my students have?                     |  |  |  |
|                                                            |                                                                                                                                                      | What vocabulary/ notation should students know for this standard? |  |  |  |
| Put a box around the conceptual component of the standard. | <b>5.M.2a</b> - A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. | What prior knowledge should my students have?                     |  |  |  |
| Underline the procedural/fluency component of the          |                                                                                                                                                      | What vocabulary/ notation should students know for this standard? |  |  |  |
| standard.                                                  | <b>5.M.2b</b> - A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.            | What prior knowledge should my students have?                     |  |  |  |
| Put a cloud around the  application component              |                                                                                                                                                      | What vocabulary/ notation should students know for this standard? |  |  |  |
| of the standard.                                           | <b>5.M.3 (Old 5.MD.4)</b> - Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and non-standard units.                      | What prior knowledge should my students have?                     |  |  |  |
|                                                            |                                                                                                                                                      | What vocabulary/ notation should students know for this standard? |  |  |  |



|                                                            | Standards Unpack                                                                                                                                                                                         | king                                                              |  |  |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Кеу                                                        | Standard                                                                                                                                                                                                 | Prerequisites/Vocabulary                                          |  |  |  |
|                                                            | <b>5.M.4 (Old 5.MD.5)</b> - Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.                                              | What prior knowledge should my students have?                     |  |  |  |
|                                                            |                                                                                                                                                                                                          | What vocabulary/ notation should students know for this standard? |  |  |  |
| Put a box around the conceptual component of the standard. | 5.M.4a - Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge       | What prior knowledge should my students have?                     |  |  |  |
| Underline the procedural/fluency component of the          | lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.            | What vocabulary/ notation should students know for this standard? |  |  |  |
| standard.  Put a cloud around the                          | <b>5.M.4b</b> - Apply the formulas V = I x w x h and V= B x h for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real world and | What prior knowledge should my students have?                     |  |  |  |
| application component of the standard.                     | mathematical problems.                                                                                                                                                                                   | What vocabulary/ notation should students know for this standard? |  |  |  |
|                                                            | <b>5.M.4c</b> - Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this   | What prior knowledge should my students have?                     |  |  |  |
|                                                            | technique to solve real world problems.                                                                                                                                                                  | What vocabulary/ notation should students know for this standard? |  |  |  |



| Directions: Find the area of each rectangle or square below. |
|--------------------------------------------------------------|
| 1.                                                           |
| 2                                                            |
| <b>3.</b> 42 cm                                              |
| 12 (11)                                                      |
| 8 cm                                                         |
| 4. 12 inches  12 inches                                      |
|                                                              |

**Directions:** Complete the following SOLVE problem with your teacher. You will only complete the S step.

Tamara has a box in the shape of a rectangular prism that she uses for her doll clothes. The prism is 18 inches tall, 8 inches long, and 5 inches wide. How many cubic inches of doll clothes can fit inside the box? **S** Underline the question. This problem is asking me to find **Directions:** Complete this page with your teacher and partner. 1. In the Warm-Up, you found the area of rectangles and squares. How do you find the area of a rectangle or square? **2.** How do you write the units when finding the area? Why? **3.** What shape is this? 4. Like a square, a cube has length and width, but it also has a third dimension. What is the third dimension? **5.** Because it has three dimensions, we are going to call the cube a **6.** Use cubes to create a rectangle that is 4 cubes long and 3 cubes wide. **7.** What is the area of the base of your rectangular prism?



| How ma        | ny cubes did it   | take to make y   | our rectangula  | ar prism  | ?                 |
|---------------|-------------------|------------------|-----------------|-----------|-------------------|
| • On top      | of the cubes, a   | add another laye | er of cubes tha | at is the | exact same size   |
| . What i      | s the area of th  | e base of your i | ectangular pr   | ism?      |                   |
| . What is     | s the height of y | our rectangular  | prism?          | The leng  | jth? The wid      |
|               |                   |                  |                 |           | ie exact same siz |
| • What i      | s the area of th  | e base of your i | ectangular pr   | ısm?      |                   |
| • What is     | s the height of y | our rectangular  | prism?          | The leng  | th? The wid       |
|               |                   |                  | vour rectangu   | lar prisi | m?                |
| <br>'. How m  | nany cubes did i  | it take to make  | your rectangu   |           |                   |
|               | nany cubes did i  |                  |                 | -         | sm in the chart   |
| st the h      |                   |                  |                 | -         | sm in the chart   |
| st the holo   | eight, length,    | and number o     | f cubes for e   | ach pri   |                   |
| st the holow. | eight, length,    | and number o     | f cubes for e   | ach pri   |                   |



**Directions:** Complete this page with your teacher and partner.

1. List the base area, height, and number of cubes for each prism in the chart below.

| #   | Base Area | #   | Height | #   | # of Cubes |
|-----|-----------|-----|--------|-----|------------|
| 7.  |           | 8.  |        | 9.  |            |
|     |           |     |        |     |            |
| 11. |           | 12. |        | 13. |            |
|     |           |     |        |     |            |
| 15. |           | 16. |        | 17. |            |
|     |           |     |        |     |            |

| 2. | Do you see a relationship between the base area, height, and the number of cubes?                                                                                                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. | Filling a prism with sand to see how much it would hold is the same thing as finding the number of cubic units in a prism. This is called the                                        |
| 4. | There are two formulas that can be used to find the volume of a rectangular prism. Based on the relationships we looked at in numbers 7 – 17, can you come up with the two formulas? |
| 5. | Volume is measured in cubic units. Explain why                                                                                                                                       |



**Directions:** Complete this page with your teacher and partner.

| Example 1:                                                                                                       | Volume Formula: | Problem 1:                                                                                                           |
|------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------|
|                                                                                                                  |                 |                                                                                                                      |
| Example 2:                                                                                                       | Volume Formula: | Problem 2:                                                                                                           |
| 12 m 5 m 6 m                                                                                                     |                 | 6 m<br>8 m                                                                                                           |
| Example 3: A wooden cabinet has a length of 40 in., a height of 25 in., and a width of 8 in. What is its volume? | Volume Formula: | Problem 3: A shoebox has a length of 22 inches, a height of 12 inches, and a width of 10 inches. What is its volume? |
| Example 4: A rectangular prism has a base area of 18 m² and a height of 4 m. What is the volume of the prism?    | Volume Formula: | Problem 4: A rectangular prism has a base area of 15 m² and a height of 5 m. What is the volume of the prism?        |



## **LESSON 27: Volume of Complex Figures: Word Problems**

**Directions:** Complete this page with your teacher and partner.

**1.** Partner A, use your cubes to build Prism A. Partner B, use your cubes to build Prism B.

|               | Length | Width | Height | Volume |
|---------------|--------|-------|--------|--------|
| Prism A       | 3      | 2     | 4      |        |
| Prism B       | 2      | 3     | 3      |        |
| Prism A and B |        |       |        |        |

| 2. | Find the volume of each prism and fill in the volume column. How did you find the |
|----|-----------------------------------------------------------------------------------|
|    | volume?                                                                           |
|    |                                                                                   |
|    |                                                                                   |
|    |                                                                                   |

| 3. | Place both  | prisms   | next to    | each  | other,   | so th  | at they | are  | touching. | This | is | called | а |
|----|-------------|----------|------------|-------|----------|--------|---------|------|-----------|------|----|--------|---|
|    | complex fig | gure. Wh | nat is the | volur | ne of th | he pri | sms coi | mbin | ed?       |      |    |        |   |
|    |             | -        |            |       |          |        |         |      |           |      |    |        |   |

| 4. | How were you able to find the volume? |  |
|----|---------------------------------------|--|
|    | ,                                     |  |

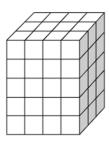
| 5. | Could you multiply | all the dimen | isions of both | prisms togethe | er to get the | volume? |
|----|--------------------|---------------|----------------|----------------|---------------|---------|
|    |                    |               |                |                |               |         |

| 6. | Could you | add the | lengths, | widths, | and h | neights, | and | then | multiply | to | get | the |
|----|-----------|---------|----------|---------|-------|----------|-----|------|----------|----|-----|-----|
|    | volume?   |         |          |         |       |          |     |      |          |    |     |     |

| 7. | If you did not have cubes to count, how could you find the volume of the complex |
|----|----------------------------------------------------------------------------------|
|    | figure?                                                                          |
|    |                                                                                  |
|    |                                                                                  |



#### **Understanding Reasoning Questions**


Use this sheet as a reflection tool to support the understanding of the reasoning questions. After you engage/learn about the questions, use the tool to make notes around your take aways, implementation ideas, and ways to incorporate the rubric

|                                                          | Takeaways About the Questions | Reflections on Implementation<br>Ideas and the Rubric |  |  |
|----------------------------------------------------------|-------------------------------|-------------------------------------------------------|--|--|
| Takeaways About the<br>Questions                         |                               |                                                       |  |  |
| Understanding of How<br>They Are Scored                  |                               |                                                       |  |  |
| Reflections on<br>Implementation Ideas and<br>the Rubric |                               |                                                       |  |  |

### Reasoning Question - 5.C.1 - 3

Used from: NJ Released Questions – 5. C. 1-3 – Measurement and Data – M01278

In this right rectangular prism, each small cube measures 1 unit on each side.



What is the volume of the prism?

Explain how you found the volume. You may show your work in your explanation.

What would be the dimensions of a new right rectangular prism that has 20 fewer unit cubes than the original prism?

Explain how you determined the dimensions of the new right rectangular prism.



| Training Reflection      |                          |                            |     |  |  |  |  |
|--------------------------|--------------------------|----------------------------|-----|--|--|--|--|
| What are your takeaways? |                          |                            |     |  |  |  |  |
| Reasoning                | Precision                |                            |     |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |
| Wha                      | it are your next steps a | s a result of this trainir | ng? |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |
|                          |                          |                            |     |  |  |  |  |

