

Standards Unpacking		
Key	Standard	Prerequisites/Vocabulary
Put a box around the conceptual component	6.EE.5 - <u>Understand</u> solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? <u>Use substitution</u> to determine whether a given number in a specified set makes an equation or inequality true.	What prior knowledge should my students have?
of the standard.		What vocabulary/ notation should students know for this standard?
Underline the procedural/fluency		
component of the standard. Put a cloud around the application	6.EE.6 - Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; <u>understand</u> that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.	What prior knowledge should my students have?
of the standard.		What vocabulary/ notation should students know for this standard?

	6.EE.7 - Solve <u>real-world and mathematical</u> <u>problems</u> by writing and solving equations and inequalities of the form $x + p = q$ and $px = q$ for cases in which p , q and x are all nonnegative rational numbers. Inequalities will include <, >, ≤, and ≥.	What prior knowledge should my students have?
Put a box around the conceptual component of the standard.		What vocabulary/ notation should students know for this standard?
Underline the procedural/fluency component of the standard.	6.EE.8 - Write an inequality of the form $x > c$ or $x < c$ to represent a constraint or condition in a realworld or mathematical problem. Recognize that inequalities of the form $x > c$ or $x < c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.	What prior knowledge should my students have?
Put a cloud around the application component of the standard.		What vocabulary/ notation should students know for this standard?
of the standard.	6.EE.9 - <u>Use variables</u> to represent two quantities in a real-world problem that change in relationship to one another; <u>write</u> an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. <u>Analyze</u> the relationship between the dependent and independent variables	What prior knowledge should my students have?
	using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time.	What vocabulary/ notation should students know for this standard?

Directions: Complete the following SOLVE problem with your teacher. You will only complete the S step.

Maria's mother is planning to help her buy a new pair of jeans. They are on sale. The total cost of the jeans, including tax, is \$17.00. Her mother gave her \$14.50. How much more money does Maria need to purchase the jeans?

S Underline the question.
This problem is asking me to find ______

Directions: Complete this page with your teacher and partner.

Addition Equations

1. *c* + 2 = 3

Model:	Check:
Pictorial	Solve the equation
Check:	Check:

Directions: Complete this page with your teacher and partner.

2. c + 4 = 6 Model	Check:
Pictorial Check:	Solve the equation Check:
3. c + 3 = 7 Model	Check:

Pictorial	Solve the equation
Check:	Check:

Directions: Complete this page with your teacher and partner.

Subtraction Equations: We do not model subtraction equations at the concrete level (with counters and cups), but we do use pictorial models.

1. <i>c</i> – 3 = 5	Solve the equation	Check:
Pictorial Model:		
2. <i>x</i> – 2 = 4	Solve the equation	Check:
Pictorial Model:		
3. <i>p</i> - 4 = 6	Solve the equation	Check:
Pictorial Model:		
4. r - 2 = 7	Solve the equation	Check:
Pictorial Model:		
5. <i>c</i> – 1 = 8	Solve the equation	Check:
Pictorial Model:		
	<u> </u>	<u> </u>

Understanding Reasoning Questions

Use this sheet as a reflection tool to support the understanding of the reasoning questions. After you engage/learn about the questions, use the tool to make notes around your take aways, implementation ideas, and ways to incorporate the rubric

	Takeaways About the Questions	Reflections on Implementation Ideas and the Rubric
Takeaways About the Questions		
Understanding of How They Are Scored		
Reflections on Implementation Ideas and the Rubric		

Reasoning Question - 6.C.7

Used from: NJ Released Questions – 6.C.1 – Expressions and Equations – 2019 – VF643078

Expression 1: 5(2x + 3y)

Expression 2: 3x + 6y + x + 3(2x + 3y)

Are the expressions shown equivalent? Show or explain all of the steps you used to determine your answer. Use properties of operations to justify each step.

LESSON 24: One-Step Equations – Multiply and Divide

Directions: Complete the following SOLVE problem with your teacher. You will only complete the S step.

Tomeka collects stamps. She has 56 stamps, which she has divided into groups of 14. She wants to share the stamps with some friends. How many groups of stamps does Tomeka have?

S Underline the question.
This problem is asking me to find ______

Directions: Complete this page with your teacher and partner.

Multiplication Equations

1. 3 <i>c</i> = 6 Model	Model Check:
Pictorial Pictorial Check:	Solve the equation Check:

LESSON 24: One-Step Equations – Multiply and Divide

Directions: Complete this page with your teacher and partner.

		T
2. 2 <i>c</i> = 8	Model	Model Check:
Pictorial		Solve the equation
Pictorial Check:		Check:
3. 5 <i>c</i> = 15	Model	Model Check:
Pictorial		Solve the equation
Pictorial Check:		Check:

LESSON 24: One-Step Equations – Multiply and Divide

Directions: Complete this page with your teacher and partner.

Division: Division equations are not modeled at the concrete level or pictorial level. However, the same steps are followed for finding the value of the variable in the equation. First isolate the variable and then balance the equation by performing the same operation on both sides.

1. $\frac{c}{3} = 6$	Check:
2. $\frac{c}{7} = 9$	Check:
3. $\frac{s}{4} = 12$	Check:
4. $\frac{x}{10} = 8$	Check:
	CO

Directions: Complete the following SOLVE problem with your teacher. You will only complete the S step.
Jennie helps her grandmother every week one day after school. Her grandmother gives her \$15 every week. Write an equation that can be used to represent the relationship between the total she earns (y) and the number of weeks worked (x) . Create a table to model the relationship for 4 weeks, 8 weeks, 12 weeks, and 16 weeks and graph the relationship on a coordinate plane.
S Underline the question. This problem is asking me to find
Directions: Complete this page with your teacher and partner.
Variables:
When we write and evaluate expressions that have unknown values we can use a to represent the unknown value. A variable is a that we can use to represent any number. We use the term variable because the value based on the expression.
Example: Brian mows two lawns every day. How many total lawns will he mow during summer vacation?
What information do we know? •
What information do we not know? • •
We can represent the relationship between the two values by using $___$. Although we can use any letter or symbol to represent unknown values, the most commonly used letters are x and y .
Let's look at what this means for our problem.
What is the relationship between the number of days and the number of lawns?
Brian mows _ lawns for every _ day.

Directions: Complete this page with y	our teacher and partner.
Brian mows two lawns every day (How vacation?	many total lawns will he mow during summer
One of the variables (x) changes and is	s called the
	e change in the first variable. This is called the based on the value of the independent
This means that the c	of lawns mowed is determined by

Practice with Variables:

Situation	Relationship between the two variables	The independent variable (x)	The dependent variable (y)
1. The school store sells packs of pencils with 4 pencils in each pack.			
2. There are 12 tomato plants in each row in the garden.			
3. There are 3 feet in a yard.		œ	

Directions: Complete this page with your teacher and partner.

Identifying Variables in a Table:

Brian mows tw	o lawns every day)	How many	y total lawns will he	e mow during summer
vacation?				
	x -		у –	

Let's look at the relationship between the two variables.

Days Brian mows	Total lawns mowed
1	2
2	
3	
4	
X	

- 1. How many lawns will Brian mow in 1 day? _____
- 2. How many lawns will Brian mow in 2 days? _____
- 3. How many lawns will Brian mow in 3 days? _____
- 4. How many lawns will Brian mow in 4 days? _____
- **5.** How many lawns will Brian mow in *x* days? ___ Explain your answer. _____
- **6.** How could we write an equation to represent the relationship? _____

Division: Complete this page with your partner.

Practice with Identifying Variables in a Table:

1. The school store sells packs of pencils with 4 pencils in each pack.

Packs of pencils (x)	Total pencils (y)
1	4
2	
3	
4	
X	

2. Twelve tomato plants are planted in each row.

Rows (x)	Total Plants (y)
1	12
2	
5	
10	
X	

3. There are three feet in a yard.

Yards (x)	Feet (y)
1	3
2	
3	
4	
X	

Directions: Complete this page with your teacher and partner.


Identifying Variables in a Graph

Brian mows two lawns every day How many total lawns will he mow during summer vacation?

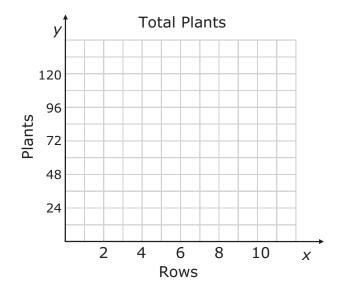
x - number of days Brian mows

y - total lawns mowed

	Total lawns mowed (y)	
1	2	(1, 2)
2		
3		
4		

- **1.** Write the ordered pair for each set of coordinates.
- **2.** Plot the coordinates on the graph.
- **3.** Explain the relationship between the number of days and the number of lawns mowed. As the number of days _____ increases by ___ the number of lawns _____ increases by ____.
- **4.** Write an equation that can be used to represent this relationship. _____
- **5.** Is there a relationship between the number of days and the number of lines? ____ Can we connect the coordinate points with a line? ____ What is the starting point of the line? Explain your answer. ____

6. Is it possible to interpret data on the graph between the points? ____ This is an example of _____. Can we make a prediction about how many lawns Brian would mow in 30 days? Explain your answer.



Directions: Complete this page with your partner.

Practice with Identifying Variables in a Graph

Situation A: 12 tomato plants in a row

Rows (x)	Total plants (y)	Ordered Pair (x, y)
1	12	(1, 12)
2		
5		
10		

- **1.** Write the ordered pair for each set of coordinates.
- **2.** Plot the coordinates on the graph.
- **3.** Explain the relationship between the number of rows and the total plants.

....

- **4.** Write an equation that can be used to represent this relationship. _____
- **5.** Is it appropriate to connect the points on the coordinate graph with a line? Explain your thinking.

6. Can we make a prediction about how many total plants there would be in 25 rows? Explain your answer.

-____·

Understanding Modeling Questions

Use this sheet as a reflection tool to support the understanding of the modeling questions. After you engage/learn about the questions, use the tool to make notes around your take aways, implementation ideas, and ways to incorporate the rubric

	Takeaways About the Questions	Reflections on Implementation Ideas and the Rubric
Takeaways About the Questions		
Understanding of How They Are Scored		
Reflections on Implementation Ideas and the Rubric		

Think Quantities!	Think Structure!	Think Repetition!
What can I count?	How is this situation behaving?	Is there a process that keeps repeating?
What can I measure?	What kind of problem is this?	
How are the quantities related?	Does the problem remind me of another I've solved?	Am I counting /building/drawing in the same way each time?
How can I represent the quantities so I can see relationships?	Will changing the form help?	Do I keep repeating the same calculations?
·	How can I chunk this expressions/number/visual?	How can I use repetition to write a rule?

Modeling Question - D.1

Used from: NJ Released Questions – D.1 – Expressions and Equations – VF643084

The students in a club are selling flowerpots to raise money. Each flowerpot sells for \$15.

Part A

Write an expression that represents the total amount of money, in dollars, the students raise from selling x flowerpots.

Part B

The goal of the students in the club was to raise \$500. They sold 43 flowerpots. By what amount did the students exceed their goal of raising \$500? Show or explain all your work.

Training Reflection					
What are your takeaways?					
Reasoning Modeling Context Precision					
Wha	lt are your next steps a	 s a result of this trainir	ng?		
	-				

