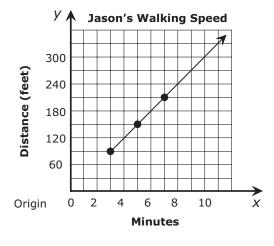
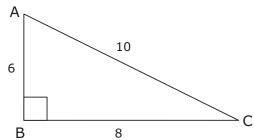


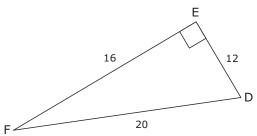
Standards Unpacking			
Key	Standard	Prerequisites/Vocabulary	
Put a box around the conceptual component	8.EE.5 - Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.	What prior knowledge should my students have?	
of the standard.		What vocabulary/ notation should students know for this standard?	
Underline the procedural/fluency component of the standard.			
Put a cloud around the application component	8.EE.6 - <u>Use similar triangles</u> to <u>explain</u> why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; <u>derive</u> the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.	What prior knowledge should my students have?	
of the standard.		What vocabulary/ notation should students know for this standard?	



Put a box around the conceptual component of the standard.	8.F.3 - Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; categorize functions as linear or nonlinear when given equations, graphs, or tables. For example, the function $A = s^2$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1, 1)$, $(2, 4)$ and $(3, 9)$, which are not on a straight line.	What prior knowledge should my students have? What vocabulary/ notation should students know for this standard?
Underline the procedural/fluency component of the standard. Put a cloud around the		
application component of the standard.	8.F.4 - Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it	What prior knowledge should my students have?
·	models, and in terms of its graph or a table of values.	What vocabulary/ notation should students know for this standard?

Directions: Complete the following SOLVE problem with your teacher. You will only complete the S Step.

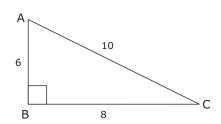

Jason was graphing the relationship between the distance he could walk in a certain number of minutes. He wanted to see if the relationship between the minutes walked and the distance was proportional. He chose the times of 3 minutes and 7 minutes to use to compare the relationship. Using what you know about the relationship between similar right triangles, what is the ratio of vertical leg horizontal leg or change in vertical over change in horizontal?


S Underline the question.
This problem is asking me to find the ______

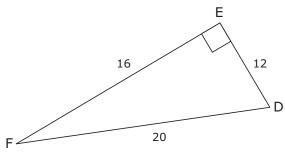
Directions: Complete this page with your teacher and partner.

Triangle 1

Triangle 2



1. Triangle 1 and Triangle 2 are both right triangles. Explain how you know this.


When we are trying to determine whether two triangles are similar, we can look at the measures of the corresponding sides.

Directions: Complete this page with your teacher and partner.

Triangle 1

Triangle 2

2. Explain the meaning of corresponding sides.

3. List the corresponding sides for Triangle 1 and Triangle 2. \overline{AB} corresponds to \overline{BC} corresponds to \overline{CA} corresponds to

4. Once we have determined the corresponding sides, we are going to create a ratio to represent the relationship between the corresponding side lengths.

$$\frac{\overline{AB}}{}$$
 =

$$\frac{\overline{BC}}{}$$

$$\overline{CA}$$
 =

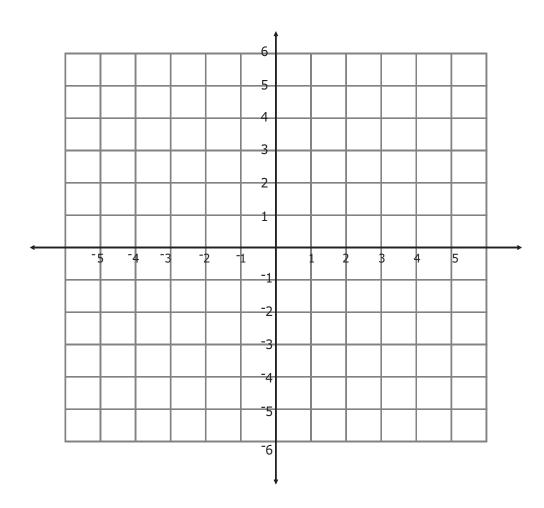
5. What do you notice about the relationship between the numerator and the denominator in each of the ratios?

6. Simplify each of the ratios.

$$\frac{\overline{AB}}{\overline{DE}} = \frac{6}{12} =$$

$$\frac{\overline{BC}}{\overline{EE}} = \frac{8}{16} =$$

$$\frac{\overline{CA}}{\overline{FD}} = \frac{10}{20} =$$


7. What is the ratio between each of the corresponding side lengths of Triangle 1 and Triangle 2?

8. If each ratio can be simplified to _, what can we say about the relationship between the three ratios? ______. They are ______. Because these three ratios are equivalent, we can say that the relationship between them is ______.

9. We can now say that Triangle 1 and Triangle 2 are similar triangles. Based on what you have discovered about the two triangles and the corresponding sides, create a definition of similar triangles with your partner.

Directions: Complete this page with your teacher and partner.

- **1.** Graph the coordinates: A(2, 3), B(2, 0), and C(0, 0).
- **2.** Graph the coordinates: D(0, 0), $E(0, \bar{6})$, and $F(\bar{4}, \bar{6})$.
- **3.** Connect points *A*, *B*, and *C*. Connect points *D*, *E*, and *F*. What do you notice about the figure that is formed by connecting each set of points?

Directions: Complete this page with your teacher and partner.

Use the triangles on the coordinate plane on S153 to complete the following chart and answer the questions about the relationship between the two triangles.

	Triangle ABC	Triangle <i>DEF</i>
Length of Vertical Leg		
Length of Horizontal Leg		
Ratio of vertical leg horizontal leg		

- **4.** What are the corresponding sides of the two triangles?
- **5.** Explain what you know about similar triangles.
- **6.** Write the relationships between the corresponding sides as a proportion.

Now substitute in the values for the leg lengths to determine if the triangles are similar.

_____ Is this statement true? ____. What does this mean?

- 7. There is another relationship to explore with similar triangles. That relationship is the ratio between the ______ leg and the ______ leg of each triangle. What is the ratio of the $\frac{\text{vertical leg}}{\text{horizontal leg}}$ in Triangle *ABC*? ___ What is the ratio of the $\frac{\text{vertical leg}}{\text{horizontal leg}}$ in Triangle *DEF*? ___
- 8. What do you notice about the two ratios?
- **9.** Is there a way to draw a line that will pass through the hypotenuse of both triangles? ____ Draw the line to pass through the hypotenuse of both triangles.

Directions: Complete this page with your teacher and partner.

10. Let's choose two points on that line that we have not used in our triangles. (-2, -3) and (4, 6). Mark them with stars.

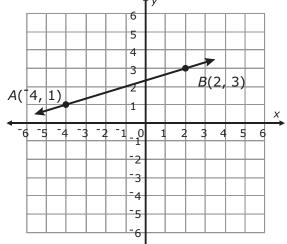
Point 1	Point 2	Change in vertical distance	Change in horizontal distance	Ratio of vertical leg horizontal leg
★ (-2, -3)	★ (4, 6)			
•	•			
*	*			

- Choose two other sets of points on the line.
- Mark the points you use with hearts and diamonds.
- Determine the change in vertical distance.
- Determine the change in horizontal distance.
- Write the change as a simplified ratio in the table above.

With your partner, make a prediction about the relationship between the vertical and horizontal distance of any two points on that line?

Was your prediction correct? ____ Explain.

What can you conclude about the ratio of the measure of the vertical leg over the horizontal leg no matter which two points you choose on the line?


Another name for the change in vertical over the change in horizontal is _____.

LESSON 13: Unit Rate as Slope

Directions: Complete this page with your teacher and partner.

1. Draw the vertical distance between the two points by moving up on the grid lines from Point A until you are horizontally even with Point B. (Draw this line in red.)

2. This line represents the change in the dependent variable or the __-values.

3. How many spaces did you move up when drawing the red line?

4. When you move up, the direction you are moving is represented with ______ numbers.

5. Draw the horizontal distance between the two points by moving to the right towards Point *B* on the grid lines from where you stopped your first dotted line. (Draw this line in blue.)

6. This line represents the change in the independent variable or the ___-values.

7. How many spaces did you move to the right when drawing the blue line? _____

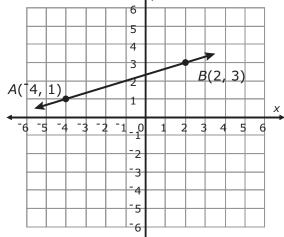
8. When you move to the right, the direction you are moving is represented with _____ numbers.

9. Complete the following ratios with your teacher:

Rate of change: $\frac{\text{change in } y}{\text{change in } x} = \frac{\Delta y}{\Delta x} =$

10. The comparison of the vertical distance and the horizontal distance can be written as a ratio. This ratio is known as the ______.

11. The rate of change of the given line is ______.


12. Another word we can use to describe the rate of change is the of the line.

S164

LESSON 13: Unit Rate as Slope

Directions: Complete this page with your teacher and partner.

1. Draw the vertical distance between the two points by moving down on the grid lines from Point *B* until you are horizontally even with Point *A*. (Draw this line in red.)

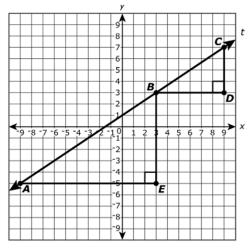
- **2.** This line represents the change in the dependent variable or the ____-values.
- **3.** How many spaces did you move down when drawing the red line? _____.
- **4.** When you move down, the direction you are moving is represented with ______ numbers.
- **5.** Draw the horizontal distance between the two points by moving to the left towards Point *A* on the grid lines from where you stopped your first dotted line. (Draw this line in blue.)
- **6.** This line represents the change in the independent variable or the ___-values.
- 7. How many spaces did you move to the left when drawing the blue line? _____
- **8.** When you move to the left, the direction you are moving is represented with _____ numbers.
- **9.** Complete the following ratios with your teacher:

Rate of change: $\frac{\text{change in } y}{\text{change in } x} = \frac{\Delta y}{\Delta x} =$

- **10.** The comparison of the vertical distance and the horizontal distance can be written as a ratio. This ratio is known as the ______.
- **11.** The rate of change of the given line is _____, which can be simplified _____.
- **12.** Another word we can use to describe the rate of change is the of the line.
- **13.** What do you notice about the slope of the line on S163 and S164? ______.
- **14.** What conclusion can we draw after this activity?

Understanding Reasoning Questions

Use this sheet as a reflection tool to support the understanding of the reasoning questions. After you engage/learn about the questions, use the tool to make notes around your take aways, implementation ideas, and ways to incorporate the rubric


	Takeaways About the Questions	Reflections on Implementation Ideas and the Rubric
Takeaways About the Questions		
Understanding of How They Are Scored		
Reflections on Implementation Ideas and the Rubric		

Reasoning Question - 8.C.5 - 1

Used from: NJ Released Questions – 8.C.5-1 – Expressions and Equations – VH7137

Similar triangles ABE and BCD are shown on the coordinate plane. Line t passes through points A, B, and C

Part A

The slope of the segment AB is ______ the slope of segment BC. (greater than, less than, equal to)

Part B

Use the ratios of the side lengths of triangle ABE and triangle BCD to explain your answer to Part A.

Part C

Write an equation for line t. Show or explain how you determined your equation.

LESSON 14: Comparing Proportional Relationships

Directions: Complete this page with your teacher and partner.

Verbal Description	Table
Henry makes 10 pies in 5 hours.	Hours 1 2 3 4 5
Graph y 10 10 8 4 2 1 2 3 4 5 x Hours Baking	Equation

What does each one of these representations tell us?

What conclusion can we draw from this chart?

LESSON 14: Comparing Proportional Relationships

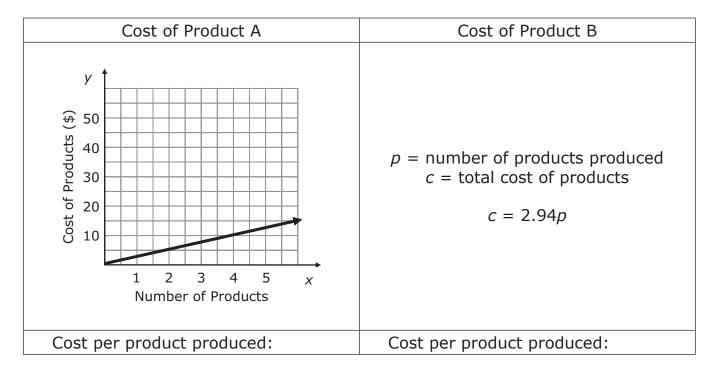
Directions: Complete this page with your teacher and partner.

Verbal Description	Table	
The parking facility earns per car.	Number of Cars Total Parking Fees (\$) 5 2 5 25 8	
Graph (\$\frac{10}{\$}\) 8 4 2 1 2 3 4 5 x Number of Cars	Equation	

How is this situation different from the previous problem?

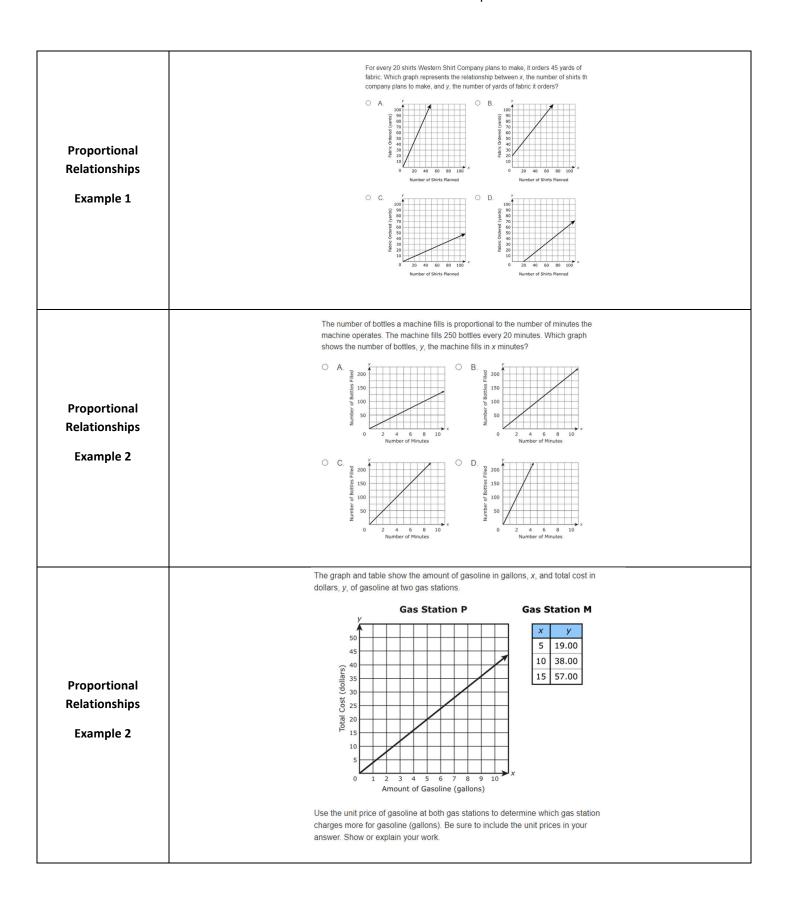
What conclusion can we draw from this chart?

LESSON 14: Comparing Proportional Relationships


Directions: Complete this page with your teacher and partner.

Scenario 1: Profits that result from sales of Juice A and Juice B are being compared.

Sales of Juice A	Sales of Juice B	
c = containers of juice p = total profit from sales p = 3.35 c	Containers of Juice Total Profit from Sales (\$) 5 \$16.25 6 \$19.50 10 \$32.50 12 \$39.00	
Profit per container sold:	Profit per bottle sold:	


1. Which juice sales would benefit the company the most? Explain.

Scenario 2: Compare costs that result from production of Product A and Product B.

2. Which product is less expensive to produce? Explain.

Grade 8 – Linear Relationships

Complete the four representations for the problem assigned to your group.

Verbal Description	Table of Values
	,
	Include the meaning of the values in your table.
Graph	Equation

Directions: Complete this page with your teacher and partner.

	Function 1	Function 2
	The output of a function is determined by finding half of the input and adding four.	6 5 4 3 -2 -1 0/1 2 3 4 5 6 x -6 5 4 3 -2 -1 0/1 2 3 4 5 6 x -1 -2 -3 -4 -4 -5 -6
Function		
Rate of Change		
How do you determine the rate of change?		
What is another word for rate of change?		
Which function has the greater rate of change or slope?		

LESSON 21: Comparing Functions

Directions: Complete this page with your teacher and partner.

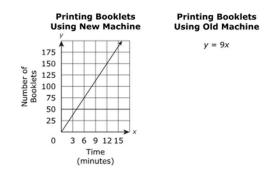
	D	
Function	Rate of	How Did You Determine the
	Change	Rate of Change?
1. The output of a function is		
determined by		
multiplying the		
input by five		
and subtracting three.		
2. $y = 3x + 7$		
3.		
x y		
-1 1		
0 7		
1 13		
2 19		
2 19		
4.		
12 19		
8		
6 4		
2		
2 4 6 8 10 12 ^X		

5. Which of the functions represented above has the greatest rate of change? Explain your thinking and defend your answer.

Understanding Modeling Questions

Use this sheet as a reflection tool to support the understanding of the modeling questions. After you engage/learn about the questions, use the tool to make notes around your take aways, implementation ideas, and ways to incorporate the rubric

	Takeaways About the Questions	Reflections on Implementation Ideas and the Rubric
Takeaways About the Questions		
Understanding of How They Are Scored		
Reflections on Implementation Ideas and the Rubric		


Think Quantities!	Think Structure!	Think Repetition!
What can I count?	How is this situation behaving?	Is there a process that keeps repeating?
What can I measure?	What kind of problem is this?	
How are the quantities related?	Does the problem remind me of another I've solved?	Am I counting /building/drawing in the same way each time?
How can I represent the quantities so I can see relationships?	Will changing the form help?	Do I keep repeating the same calculations?
·	How can I chunk this expressions/number/visual?	How can I use repetition to write a rule?

Modeling Question - D.1

Used from: NJ Released Questions – 8.D.1 – Expressions and Equations – VF655990

A company uses a new machine and an old machine to print booklets. Each machine prints booklets at a constant rate. The graph and the equation represent the relationships between x, the number of minutes the machines print, and y, the number of booklets printed.

The company uses both machines to print a total of 1,250 booklets. Both machines start printing at the same time. During printing, the old machine breaks down and stops printing. The new machine continues printing for an additional 14 minutes and completes the order.

What is the total number of minutes the new machine prints? Show or explain all your work.

Training Reflection				
What are your takeaways?				
Reasoning	Modeling	Context	Precision	
What are your next steps as a result of this training?				
			.6.	

